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Abstract

In this paper, meshless element free Galerkin (EFG) method has been extended to obtain the numerical solution of nonlinear,
unsteady heat transfer problems with temperature dependent material properties. The thermal conductivity, specific heat and density
of the material are assumed to vary linearly with the temperature. Quasi-linearization scheme has been used to obtain the nonlinear solu-
tion whereas backward difference method is used for the time integration. The essential boundary conditions have been enforced by
Lagrange multiplier technique. The meshless formulation has been presented for a nonlinear 3-D heat transfer problem. In 1-D, the
results obtained by EFG method are compared with those obtained by finite element and analytical methods whereas in 2-D and
3-D, the results are compared with those obtained by finite element method.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Analysis of nonlinear transient heat transfer problems is
very important in practice. It is difficult to find analytical
solution for such problems, so the only choice left is
approximate numerical solution. A variety of numerical
techniques are available to solve these problems.

An FEM based numerical iterative method has been
used by Donea and Giuliani [1] to solve steady-state non-
linear heat transfer problems in two-dimensional structures
with temperature dependent thermal conductivities and
radiative heat transfer. Bathe and Khoshgoftaar [2] have
obtained an FEM based numerical solution for the nonlin-
ear steady-state and transient heat transfer problems in
which they considered the convection and radiation bound-
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ary conditions. Ling and Surana [3] used the p-version least
square finite element method for obtaining the numerical
solution of axisymmetric heat conduction problems with
temperature-dependent thermal conductivities. Yang [4]
developed an FEM based time integration algorithm for
the solution of nonlinear heat transfer problems. Homoto-
phy analysis method has been improved and applied by
Liao [5] to solve strongly nonlinear heat transfer problems.
Transient heat conduction and radiation heat transfer
problems with variable thermal conductivity have been
solved by Talukdar and Mishra [6] using discrete transfer
and implicit schemes. Bondarev [7] has used variational
calculation method to solve unsteady state strong nonlin-
ear problems in heat conduction. General boundary ele-
ment method has been used by Liao [8] to solve
nonlinear heat transfer problems governed by hyperbolic
heat conduction equation. Skerget and Alujevic [9] uses
boundary element method to solve nonlinear transient heat
transfer in reactor solids with convection and radiation on
surfaces. The further use of general boundary element
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Nomenclature

C(T) specific heat, J/kg �C
C0 reference specific heat, J/kg �C
dmax scaling parameter
k(T) thermal conductivity, W/m �C
k0 reference thermal conductivity, W/m �C
m number of terms in the basis function
n number of nodes in the domain of influence
�n number of iterations
pj(x) monomial basis function
q heat flux, W/m2

_Q rate of internal heat generation per unit volume,
W/m3

�r normalized radius
_T oT

ot
t time, s
Dt time step-size, s

Th(x) moving least square approximant
V three-dimensional domain
w(x � xI) weight function used in MLS approximation
�w weighting function used in weak formulation

Greek symbols

b1 coefficient of thermal conductivity variation, �C
b2 coefficient of specific heat variation, �C
b3 coefficient of density variation, �C
X two-dimensional domain
UI(x) shape function
k Lagrangian multiplier
q(T) density, kg/m3

q0 reference density, kg/m3
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method has been done by Liao and Chwang [10] to solve
strongly nonlinear heat transfer problems. A low order
spectral method has been used by Siddique and Khayat
[11] to solve nonlinear heat conduction problems with peri-
odic boundary conditions and periodic geometry. The
precise time integration (PTI) method has been introduced
by Chen et al. [12] and applied to linear and nonlinear
transient heat conduction problems with temperature
dependent thermal conductivity and predictor-corrector
algorithm is employed to solve the nonlinear equations,
etc. Out of all the numerical methods developed so far,
finite element method has been found the most general
method not only to solve the problems of nonlinear heat
transfer but also to solve the various problems in different
areas of engineering and sciences. In spite of its numerous
advantages, it is not well-suited for certain class of prob-
lems such as crack propagation, dynamic impact problems,
moving phase boundaries, phase transformation, large
deformations, modeling of multi-scale phenomena, and
nonlinear thermal analysis. To overcome these problems,
a number of meshless methods have been developed in last
two decades. These methods have the following advantages
over FEM [13]:

� Only nodal data is required for the interpolation of field
variables.
� No mesh or elements are involved in the discretization

process.
� Node insertion or elimination is quite easier than FEM.
� No need of tedious and time consuming re-meshing

process.
� No volumetric locking problem due to unavailability of

elements.
� Selection of basis function is more flexible than FEM.
� Complex geometries and moving domain problems can

be easily handled.
� Smooth shape functions are used based on local
approximation.
� Good accuracy and high convergence rate can be

achieved.
� Post-processing for the results is quite smooth.

Although most of the meshless methods have high com-
putational cost as compared to FEM, but above advanta-
ges of meshless methods over FEM have motivated us to
extend the application of meshless method in unsteady
state nonlinear heat transfer. In the present work, element
free Galerkin (EFG) method has been used due to its good
accuracy, ease in formulation, and wide range of applica-
tions [14,15], and to start with, simple geometries have been
chosen in 1-D, 2-D and 3-D. For nonlinear simulation, it is
assumed that material properties i.e. thermal conductivity,
specific heat and density are varying linearly with tempera-
ture. Lagrange multiplier method has been used to enforce
the essential boundary conditions. The meshless formu-
lation has been given for a 3-D model problem. The dis-
crete equations are obtained using variational principle
approach. In 1-D problem, the results obtained by EFG
method are compared with those obtained by finite element
[ANSYS 8.0] and analytical methods [16], whereas in case
of 2-D and 3-D problems, the results are compared with
those obtained by finite element method [ANSYS 8.0].
2. Review of element free Galerkin method

The EFG method utilizes the moving least square
(MLS) approximants, which are constructed in terms of
nodes only. The MLS approximation consists of three
components: a basis function, a weight function associated
with each node, and a set of coefficients that depends on
node position. Using MLS approximation, an unknown
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temperature function T(x) is approximated by Th(x)
[14,15]:

T hðxÞ ¼
Xm

j¼1

pjðxÞajðxÞ � pTðxÞaðxÞ ð1Þ

where pT(x) = [1, x,y,z], aT(x) = [a1(x),a2(x), a3(x),a4(x)],
m is the number of terms in the basis function. At any given
point x, the unknown coefficients a(x) are determined by
minimizing the weighted discrete L2-norm J:

J ¼
Xn

I¼1

wðx� xIÞ½pTðxÞaðxÞ � T I �2 ð2Þ

where TI is the nodal parameter at x = xI, it is not the
nodal value of Th(x = xI) since Th(x) is an approximant
not an interpolant; w(x � xI) is a non-zero weight function
of node I at x and n is the number of nodes in the domain
of influence of x for which w(x � xI) 6¼ 0. The stationary
value of J in Eq. (2) with respect to a(x) leads to the follow-
ing set of linear equations:

AðxÞaðxÞ ¼ BðxÞT ð3Þ

where A and B are given as

A¼
Xn

I¼1

wðx�xIÞpðxIÞpTðxIÞ ð4Þ

BðxÞ ¼ fwðx�x1Þpðx1Þ;wðx�x2Þpðx2Þ; . . . ;wðx�xnÞpðxnÞg
ð5Þ

Substituting a(x) in Eq. (1), the MLS approximant is ob-
tained as

T hðxÞ ¼
Xn

I¼1

UIðxÞT I ¼ UTðxÞT ð6Þ

where

UTðxÞ ¼ fU1ðxÞ;U2ðxÞ;U3ðxÞ; . . . ;UnðxÞg ð7Þ
TT ¼ ½T 1; T 2; T 3; . . . ; T n� ð8Þ

The mesh free shape function UI(x) is defined as

UIðxÞ ¼
Xm

j¼1

pjðxÞðA�1ðxÞBðxÞÞjI ¼ pTA�1BI ð9Þ
y
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Fig. 1. Three-dimensional model.
2.1. The weight function

The weight function is non-zero over a small neighbor-
hood of a node xI called the support or domain of influence
of node I. The exponential weight function [15] used in
present analysis can be written as a function of normalized
radius �r as

wð�rÞ ¼ 100��r 0 6 �r 6 1

0 �r > 1

� �
ð10Þ

where �rI ¼ kx� xIk=dmI and kx � xIk, is the distance
from a sampling point x to a node xI, and dmI is the domain
of influence of node I. ð�rxÞI ¼ kx� xIk=dmxI , ð�ryÞI ¼
ky � yIk=dmyI , ð�rzÞI ¼ kz� zIk=dmzI , dmxI = dmaxcxI, dmyI =
dmaxcyI, dmzI = dmaxczI, dmax = scaling parameter. cxI, cyI

and czI at node I, are the distances to the nearest neighbors.
The weight function at any given point is obtained as

wðx� xIÞ ¼ wð�rxÞwð�ryÞwð�rzÞ ¼ wxwywz ð11Þ

where wð�rxÞ, wð�ryÞ and wð�rzÞ can be calculated by replacing
�r by �rx, �ry and �rz in the expression of wð�rÞ.
2.2. Enforcement of essential boundary conditions

Lacking of Kronecker delta property in EFG shape
functions UI poses some difficulty in the imposition of
essential boundary conditions. For that different numerical
techniques have been proposed to enforce the essential
boundary conditions such as Lagrange multiplier method
[14,15], modified variational principle approach [17], cou-
pling with finite element method [18], penalty approach
[19], full transformation technique [20], etc. In the present
work, Lagrange multiplier method has been used due to
its accuracy [21,22].

In 3-D, Lagrange multiplier k is expressed as

kðxÞ ¼ NIðaÞkI ; x 2 Si ð12aÞ
dkðxÞ ¼ NIðaÞdkI ; x 2 Si ð12bÞ

where NI(a) is a Lagrange interpolant, and a is the area
along the essential boundaries.
3. Numerical formulation

In this section, meshless numerical formulation has been
presented for a general three-dimensional (3-D) nonlinear,
unsteady heat transfer problem (Fig. 1). A general form of
energy equation for three-dimensional heat transfer in
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isotropic materials with temperature dependent material
properties is given as

r � fkðT ÞrTg þ _Q ¼ qðT ÞCðT Þ _T ð13aÞ
with the following initial conditions and boundary
conditions

T ðx; 0Þ ¼ T i on V ð13bÞ
T ðx; tÞ ¼ T S1

x 2 S1 ð13cÞ
qðx; tÞ ¼ hðT � T1Þ x 2 Sj ð13dÞ

where k(T) = k0(1 + b1T), q(T) = q0(1 + b2T), C(T) =
C0(1 � b3T), j = 2,3, . . . , 6.

The weak form of Eq. (13a) is obtained asZ
V
r�w � fkðT ÞrTgdV �

Z
V

�w _QdV

þ
Z

V
�wqðT ÞCðT Þ _T dV þ

X6

j¼2

Z
Sj

�whðT � T1ÞdS ¼ 0

ð14Þ

The functional P(T) can be written as

PðT Þ ¼ 1

2

Z
V
rT � fkðT ÞrTgdV �

Z
V

T _QdV

þ
Z

V
qðT ÞCðT ÞT _T dV þ

X6

j¼2

Z
Sj

hT 2

2
dS

�
X6

j¼2

Z
Sj

hTT1dS ð15Þ

Enforcing essential boundary conditions using Lagrange
multiplier method, the modified functional P�ðT Þ has been
obtained as

P�ðT Þ ¼ 1

2

Z
V
rT :fkðT ÞrTgdV �

Z
V

T _QdV

þ
Z

V
qðT ÞCðT ÞT _T dV þ

X6

j¼2

Z
Sj

hT 2

2
dS

�
X6

j¼2

Z
Sj

hTT1dS þ
Z

S1

kðT � T S1
ÞdS ð16Þ

Taking variation i.e. dP�ðT Þ of Eq. (16), it reduces to

dP�ðT Þ ¼
Z

V
rT � fkðT ÞdrT gdV �

Z
V

_QdT dV

þ
Z

V
qðT ÞCðT Þ _TdT dV þ

X6

j¼2

Z
Sj

hTdT dS

�
X6

j¼2

Z
Sj

hT1dT dS þ
Z

S1

kdT dS

þ
Z

S1

dkðT � T S1
ÞdS ð17Þ

Since dT and dk are arbitrary in preceding equation, the
following relations are obtained using Eq. (6)
½KðTÞ�fTg þ ½MðTÞ�f _Tg þ ½G�fkg ¼ ffg ð18aÞ
½GT�fTg ¼ fqg ð18bÞ

where

KIJ ðT Þ ¼
X

l¼x;y;z

Z
V

UI ;l kðT ÞUJ ;l dV þ
X6

j¼2

Z
Sj

hUT
I UJ dS ð19aÞ

MIJ ðT Þ ¼
Z

V
qðT ÞCðT ÞUT

I UJ dV ð19bÞ

fI ¼
Z

V

_QUIdV þ
X6

j¼2

Z
Sj

hT1UIdS ð19cÞ

GIK ¼
Z

S1

UINKdS and qK ¼
Z

S1

T S1
N KdS ð19dÞ

Applying quasi-linearization, and unconditionally stable im-
plicit backward difference approach [23] for time approxi-
mation, Eq. (18) can be written as

ð20Þ

where ½RðTÞ��n ¼ ½MðTÞ��nfTg�n þ Dtffg and ½KðTÞ��n ¼
Dt½KðTÞ��n.
4. Numerical results and discussion

In the present work, a general three-dimensional formu-
lation has been provided for a model problem in the previ-
ous section. Numerical results have been obtained for
nonlinear, unsteady state heat transfer problems with tem-
perature dependent material properties, and it has been
assumed that the material parameters namely thermal con-
ductivity, specific heat and density vary linearly with tem-
perature. Quasi-linearization scheme is adopted for the
solution of nonlinear equations, and unconditionally-stable
backward difference method has been used for the time
integration. The EFG results are obtained using linear
basis for exponential weight function, whereas FEM results
are obtained by ANSYS package. The following data has
been used in the present simulations:

Thermal conductivity, k(T) = k0(1 + b1T), where k0 =
400 W/m �C, b1 = 0.0001/�C.
Specific heat, C(T) = C0(1 + b2T), where C0 = 300 J/
kg �C, b2 = 0.0001/�C.
Density, q(T) = q0(1 � b3T) where, q0 = 9000 kg/m3,
b3 = 0.000001/�C.
Heat transfer coefficient, h = 100 W/m2 �C.
Surrounding fluid temperature, T1 = 20 �C.
Initial temperature, Ti = 0 �C.
4.1. One-dimensional (1-D) analysis

Three-dimensional formulation has been used for the
simulation of one-dimensional, semi-infinite model heat
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transfer problem, and it has been assumed that the variation
of temperature in semi-infinite solids is one-dimensional but
the problem has been modeled in two-dimensional domain
as shown in Fig. 2, hence terms containing z have been
dropped from 3-D governing equation.

Model data, initial and boundary conditions are also
presented in Fig. 2. The EFG results have been obtained
Initially at 

q
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T
k
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∂ =0
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Fig. 2. Semi-infinite model for u
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Fig. 3. Comparison of EFG results with an
using uniform nodal distribution scheme for 42 nodes,
whereas FEM results have also been obtained using uni-
form nodal distribution for the same number of nodes
using 20 elements. Fig. 3 shows a comparison of EFG
results with those obtained by finite element and analytical
methods along the length of model for the various values of
time. From the results presented in Fig. 3, it has been
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observed that the results obtained by EFG method are in
good agreement with those obtained by finite element
and analytical methods.
4.2. Two-dimensional (2-D) analysis

For 2-D simulation, we consider heat conduction in a
unit square as shown in Fig. 4. The left edge of the unit
square has been subjected to a constant temperature T1,
and top and right edges are exposed to convection with sur-
W

y

x
L

Ω

Initially at iTT =

1TT =

convection edge

insulated edge

L = 1 m
W = 1 m

1T = 200 °C 

t = 100 s Δ

Fig. 4. Two-dimensional model.
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Fig. 5. Comparison of EFG results w
rounding fluid temperature T1 while bottom edge is kept
insulated.

3-D formulation has been utilized for 2-D simulation by
dropping the terms associated with variable z. FEM results
have been obtained by ANSYS package [Version 8.0] using
four node quadrilateral element [Plane 55] for a uniform
mesh with 121 nodes (100 elements), and EFG results have
been obtained using uniform nodal distribution scheme for
121 nodes. A comparison of EFG results with those
obtained by finite element method has been presented in
Fig. 5 at (x/L = 0.5,y) for t = 500 s, 1000 s, 2500 s, 5000 s
and 10,000 s. From the results presented in Fig. 5, it can
be concluded that the results obtained by EFG method
are almost same as those obtained by finite element method.

4.3. Three-dimensional (3-D) analysis

Consider a unit cube (as shown in Fig. 1) for 3-D
unsteady-state heat transfer with an initial temperature
Ti. The left surface of the cube has been subjected to a con-
stant temperature T S1

, and other surfaces are subjected to
convection boundary conditions with surrounding fluid
temperature T1. The unsteady state EFG results are
obtained using uniform nodal distribution scheme for 729
nodes, whereas FEM results are obtained by ANSYS pack-
age using 512 elements (3-D brick element, Solid 70) with
uniform nodal data distribution scheme for the same num-
ber of nodes. A comparison of EFG results with FEM
results is presented in Fig. 6 along a line at (x/L = 0.5,
y/W = 0.5,z) for t = 500 s, 1000 s, 2500 s, 5000 s and
0.5 0.6 0.7 0.8 0.9 1

EFG

FEM

, m

ith FEM results at (x/L = 0.5,y).
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10,000 s. A similar comparison of EFG results with FEM
results is presented in Fig. 7 for the same number of nodes
along another line at (x/L = 1, y/W = 0.5, z). From the
results presented in Figs. 6 and 7, it has been observed
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that the EFG results are in good agreement with FEM
results.

5. Conclusions

In this work, meshless EFG method has been success-
fully extended to obtain the numerical solution of unsteady
state nonlinear heat transfer problems with temperature
dependent material properties. It was assumed that the
thermal conductivity, specific heat and density vary linearly
with temperature. For the linearization of nonlinear equa-
tions, quasi-linearization technique was used, whereas for
time integration, backward difference method was utilized.
In 1-D, the results obtained by EFG method are compared
with those obtained by finite element and analytical meth-
ods, whereas in 2-D and 3-D, the EFG results are com-
pared with FEM results. From the above analysis, it can
be concluded that the results obtained by EFG method
are in good agreement with those obtained by FEM results
in 1-D, 2-D and 3-D. In future, this work can be extended
for the nonlinear heat transfer analysis of the problems
having complicated geometries.
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